발간논문

Home > KJMM 논문 > 발간논문

Vol.58, No.10, 721 ~ 728, 2020
Title
Influence of Te Vacancies on the Thermoelectric Properties of n-type Cu0.008Bi2Te2.7-xSe0.3
양예림 Yerim Yang , 김태완 Taewan Kim , 홍석원 Seokown Hong , 안지우 Jiwoo An , 김상일 Sang-il Kim
Abstract
In this study, we report the influence of Te vacancy formation on the thermoelectric properties of n-type Cu0.008Bi2Te2.7Se0.3 alloys, including their electronic and thermal transport properties. Te-deficient Cu0.008Bi2Te2.7-xSe0.3 (x = 0, 0.005, 0.01 and 0.02) samples were systematically synthesized and characterized. Regarding electronic transport properties, carrier concentration was increased with Te vacancies, while carrier mobility was maintained. As a result, the electrical conductivity significantly increased while the Seebeck coefficient reduced moderately, thus, the power factor was enhanced from 3.04 mW/mK2 (pristine) to 3.22 mW/mK2 (x = 0.02) at 300 K. Further analysis based on a single parabolic band model revealed that the weighted mobility of the conduction band increased, which is favorable for electron transport, as Te vacancies were generated. Regarding thermal transport properties, lattice thermal conductivity decreased with Te vacancies due to additional point defect phonon scattering, however, total thermal conductivity increased due to larger electronic contribution as Te vacancies increased. Analysis using the Debye-Callaway model suggests that the phonon scattering by the Te vacancies is as efficient as the substitution point defect scattering. Consequently, the thermoelectric figure of merit zT increased at all temperatures for x = 0.005 and 0.01. The maximum zT of 0.95 was achieved for Te-deficient Cu0.008Bi2Te2.69Se0.3 (x = 0.01) at 400 K.
Key Words
thermoelectric, vacancy, phonon scattering, Bi2Te3
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.