발간논문

Home > KJMM 논문 > 발간논문

Vol.61, No.4, 231 ~ 242, 2023
Title
Review of Electro-catalysts Supported by Metal Oxides for Electrochemical Oxygen Reduction Reaction
조유진 Yoo-jin Jo , 정원석 Won Suk Jung , 임보영 Boyoung Lim
Abstract
Global warming and air pollution have forced greater attention to new energy sources to replace fossil fuels. Among several eco-friendly energy sources, polymer electrolyte membrane fuel cells have been increasingly investigated since they have zero emissions, high energy density, and high energy efficiency. Carbon-supported Pt catalyst is generally used for the cathodic catalyst in polymer electrolyte membrane fuel cells. However, Pt/C catalysts corrode under start-up/shut-down conditions. Pt agglomeration, separation, and loss can occur due to the carbon corrosion, which results in a rapid performance loss. Metal oxide is a promising candidate as an alternative support since it shows high stability in the high potential. Of several metal oxides, titanium oxides and tin oxides have been widely investigated. Their performance is comparable to the Pt/C catalyst, and they have shown even higher durability than the Pt/C catalyst in accelerated stress tests simulating start-up/shut-down conditions. In this paper, we summarize the development of metal oxide supports for the Pt catalyst in the five most recent years. In recent studies, the characteristics of metal oxides have been varied using new synthesis methods, annealing temperature, precursors, and dopants, which results in enhanced ORR activity and durability. Advanced metal oxides have shown high durability and exhibited acceptable performance compared to the state-of-the-art Pt/C catalysts. (Received 16 October, 2022; Accepted 3 January, 2023)
Key Words
metal oxide, oxygen reduction reaction, proton exchange membrane fuel cells, catalytic activity, stability
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.