발간논문

Home > KJMM 논문 > 발간논문

Vol.61, No.4, 252 ~ 261, 2023
Title
Method of Suppressing Solidification Cracking by Laser Surface Melting and Epitaxial Growth Behavior for Directionally Solidified 247LC Superalloy
김경민 Kyeong-min Kim , 천은준 Eun-joon Chun
Abstract
In this study, the relationship between solidification cracking and epitaxial growth behavior with the high-speed laser surface melting of a directionally solidified 247LC superalloys was fundamentally and metallurgically investigated, to develop a successful welding procedure for the next generation of gas turbine blades. Under typical laser surface melting conditions (scan speed: 50 mm/s, heat input: 40 J/mm), severe solidification cracking phenomena occurs. The key metallurgical factors of solidification cracking have been identified as solidification segregation-assisted pipeline diffusion behavior at the solidification grain boundary, and in the randomly formed polycrystalline melting zone microstructure. In addition, under extremely low heat input and high-speed laser beam scan conditions (scan speed: 1000 mm/s, heat input: 2 J/mm), an effective surface melting zone can be obtained within a single directionally solidified grain under a relatively high-energy beam density (65 J/mm2) using the characteristics of single-mode fiber lasers. Results reveal that the laser melting zone successfully shows a 99.9% epitaxial growth achievement ratio. Because of the superior epitaxial growth ratio within the laser surface melting zone, and the rapid solidification phenomena, formation of a solidification grain boundary and solidification segregation-assisted pipeline diffusion behavior can be suppressed. Finally, a solidification crack-free laser melting zone can thus be achieved. (Received 9 December, 2022; Accepted 28 December, 2022)
Key Words
directional solidification, 247LC superalloy, laser surface melting, epitaxial growth, solidification cracking
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.